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Abstract

This work considers the effect that damage has upon the higher order derivatives of mode shapes of structures having

primarily beam-like vibration. Via numerical investigations, the sensitivity of various damage related parameters in

inducing changes in these higher order modal derivatives is determined, leading to a more complete understanding of what

factors make the most contribution to significant changes in these derivatives. It is concluded that higher order mode shape

derivatives (e.g., modal curvature, third derivative, and fourth derivative) are better indicators of damage than the mode

shapes. Three distinct types of response for the damage-induced higher order derivative discontinuities are identified as

three key parameters (the mass loss, stiffness loss, and damage radius scale) vary. From this, formal approximations are

obtained for the expected forms of the higher order derivative discontinuities based upon the underlying behavior

predicted by a simple relation among these three parameters. These approximations are checked with numerical

simulations, and an excellent level of agreement is observed under appropriate conditions. Finally, the potential of these

higher order derivative changes for indicating the presence and location of damage in a global setting is examined.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A great deal of interest has developed over the past few decades in developing methods to detect, locate, and
quantify damage in civil infrastructure (i.e., structural health monitoring) by determining changes in a
structure’s vibration characteristics. Such methods are popular due to the relative ease in which vibration tests
can be performed and the direct relationships that exist between structural properties and vibration-response
properties. Excellent reviews of the literature related to structural health monitoring and damage identification
methods based upon vibration changes are given in Refs. [1,2].

One of two conceptual strategies forms the basis for most damage identification methods presented in the
literature. One strategy centers on ‘‘model-based’’ approaches [3], in which experimentally obtained vibration
data are used to update a model of the current state of the structure, from which changes relative to a previous
state can be identified. The model may be explicitly defined (e.g., a finite element model of the structure) or
implicitly defined (e.g., a neural network trained to relate structural properties and vibration response
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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quantities). Several problems have been identified with such strategies [4], including an inability to guarantee
accurate modeling of the structure to be monitored, difficulty in accounting for errors in the measurements,
and a lack of uniqueness in the relationship between updated structural properties and resulting vibration
responses. In this work, such methods are not considered.

The second conceptual strategy may be termed as ‘‘response-based’’ approaches [3]. In these methods,
various response signals are analyzed to identify features that may be associated with damage. While often
limited to detecting or locating damage, such approaches have been deemed very effective [2] since they avoid
modeling issues and can accommodate techniques for dealing with measurement error. They also have the
potential to be implemented in automated procedures, thus leading to real-time health monitoring. Given
these advantages over model-based methods, it is useful to consider applications of response-based methods to
damage identification in civil infrastructure systems.

A fundamental issue in any response-based approach to damage identification is the selection of an
appropriate signal feature to monitor [5]. A wide variety of signal features have been proposed for use in
damage identification, including resonant frequencies [6], mode shapes [7], mode shape slopes [8], mode shape
curvatures [9], strain energies [10], frequency response functions [11], nonlinear response features [12], wave
propagation parameters [13], autocorrelation functions [14], wavelet coefficients [15], modal damping [16],
intrinsic mode functions [17], and auto-regressive coefficients of acceleration time histories [18]. (This list is not
intended to be comprehensive in either the features or the researchers shown. Refer to the previously cited
literature reviews for further information.) Two important factors influencing the viability of any given feature
in the damage identification process are (a) its sensitivity to small, localized damage, which influences the
ability to detect damage at an early stage, thus increasing the chances for successful repair, and (b) the ability
to distinguish signal features due to damage from features arising from other sources such as the feature
extraction process or variability in the testing environment [1]. An ideal feature for use in damage
identification should be sensitive to small changes induced by damage as well as robust in the presence of
measurement and calculation errors.

Among researchers who have utilized features associated with modal vibration properties of a structure, it is
often concluded [9,19] that changes in mode shapes, and particularly mode shape curvatures, are sensitive to
the presence and location of damage and thus make good candidates for a damage identification feature.
These sensitivity properties, however, have not been studied systematically and are often validated only by
anecdotal results for specific structures [1]. In addition, it has been observed [20] that relatively large levels of
damage are used by many researchers when studying the sensitivity of mode shapes to damage, making it
unclear whether the proposed feature would be capable of identifying incipient damage.

In this work, we undertake an examination of the behavior of higher order derivatives (e.g., second, third,
and fourth derivatives) of modes shapes in the presence of damage. We restrict our analysis to beam-like
structures whose dominant vibration modes are transverse. While this limits the applicability of the results,
they are still relevant to a significant class of structures, including bridges. We are interested in determining the
sensitivity of these higher order modal derivatives to various damage-related parameters, with an eye towards
identifying parameters that have the most impact upon the magnitude of the damage-induced changes in the
modal derivatives. Based on this, we wish to determine the ability of the higher order modal derivatives to
have strong changes due to damage. We perform numerical studies of the vibration equations and use these
results to motivate analytical approximations for the changes induced by damage. Finally, we discuss the
utility of mode shape derivatives as damage identification features and make recommendations for features to
consider.

2. Theoretical considerations

2.1. Modeling of transverse vibrations for damaged structures

In this work, we assume that the transverse vibrations of the structure to be monitored can be described by
Euler–Bernoulli beam theory. This implies that shear deformations of the structure in question are negligible,
as is the effect of rotary inertia. We ignore the possibility of coupled torsional-flexural bending motions, which
may actually be present in long-span bridges and other highly flexible structures. We allow for axial variations
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in both the flexural rigidity EI as well as the mass density per unit length rA. Under these assumptions, the
governing equation for free vibration of the structure is

q2

qx2
EIðxÞ

q2y
qx2

� �
þ rAðxÞ

q2y
qt2
¼ 0, (1)

where y(x,t) is the total transverse displacement. Standard separation of variables arguments [21] lead to the
corresponding equation governing the mode shapes:

d2

dx2
EIðxÞ

d2Y nðxÞ

dx2

� �
� o2

nrAðxÞY nðxÞ ¼ 0, (2)

where Yn(x) and on are the nth mode shape and natural frequency of vibration. (Boundary conditions must be
included in order to determine the natural frequencies.) For simplicity, we shall assume that the mode shapes
are nondimensional and are scaled to have a maximum value of one.

We next consider models for the effect of damage upon the flexural rigidity and the mass density. There are
many approaches used in the literature to model the effect of damage on flexural rigidity. For example, several
authors (e.g., Refs. [22,23]) have used discontinuous distribution functions to model stiffness changes. Such
models take the general form

EIðxÞ ¼ EIof1� yDðx� xdÞg, (3)

where EIo is a nominal flexural rigidity of the beam, y relates to the ‘‘size’’ of the discontinuity, and D(x�xd) is
a discontinuous distribution such as the Heaviside step function H(x�xd) or Dirac delta function d(x�xd)
associated with a change in rigidity at x ¼ xd. Such models are consistent with the assumption of a ‘‘jump’’ or
‘‘step’’ discontinuity in the flexural stiffness. A variation on such a model is the use of a pair of ‘‘jumps’’—one
that decreases the stiffness while the other increases it. This version is implicitly assumed in many finite
element-based models where damage is simulated by modifying element stiffnesses.

Another class of flexural rigidity models is associated with so-called cracked beam theory, in which
modifications of the stress and strain fields due to the presence of one or more open cracks in a beam lead to
changes in the effective stiffness in a neighborhood of the crack(s) [24–27]. An illustration of applying cracked
beam theory to an Euler–Bernouli beam with a rectangular cross section and a pair of symmetric open cracks
is provided in Ref. [24]; the resulting flexural rigidity function is

EIðxÞ ¼ EIo 1þ
m� 1

exp
2a
d
jx� xd j

� �
8>><
>>:

9>>=
>>;
�1

. (4)

In this model, m is a constant related to the stress distribution on the cracked section, 2d is the depth of the
beam, and a describes the rate of stress decay away from the crack tip. Variations of such models have been
utilized [28,29], among others.

A common feature of most flexural rigidity models is the presence of a characteristic ‘‘radius’’ ld associated
with the axial region in which the flexural rigidity is expected to differ from its undamaged value. For instance,
setting m ¼ 1.2 in the illustrative function in Eq. (4), we note that EIo � EIðxÞo0:0001EIo for
x� xdj j43:8d=a � ld ; it is reasonable to conclude that the effect of the crack on the stiffness is confined to
the region xd � ldpxpxd þ ld . As mentioned previously, many finite element models also have such a radius,
arising from the finite-sized zone of reduced stiffness. The presence of ld (either explicitly or implicitly) reflects
the intuitive assumption that the effect of damage is spatially bounded in some sense; this assumption plays a
vital role in the subsequent analysis.

Based upon the above observations, we model the flexural rigidity of the damaged beam as follows:

EIðxÞ ¼ EIof1� kDðZðxÞÞg, (5)

where ZðxÞ ¼ ðx� xdÞ=ld is a dimensionless ‘‘damage zone’’ coordinate whose origin is x ¼ xd (the damage
center), D(Z) is a nondimensional, C2-continuous stiffness modification function expressing the flexural rigidity
changes due to damage, and k is the maximum percentage change in EI(x) from its undamaged value EIo.
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Note that the continuity requirement in principle rules out models of the form shown in Eq. (3). We can,
however, overcome this obstacle by considering appropriately continuous functions whose limiting behavior is
discontinuous. It is assumed that 0pD(Z)p1 for all values of Z and that D and its derivatives with respect to its
argument are zero for jZj41 (i.e., outside of the ‘‘damage zone’’). It is also assumed that D(Z ¼ 0) ¼ 1.
(This last assumption is consistent with the assumption of a symmetric damage zone; while convenient,
we note that such symmetry is not required.) As for rA(x), it was noted in Ref. [1] that most damage
identification methods do not assume noticeable mass changes due to damage. One exception is Chondros
[26], who related changes in linear momentum to a ‘‘displacement disturbance function’’, resulting in a
functional form for rA(x) similar to that of EI(x). Thus, we assume that rA(x) has features similar to those of
EI(x); that is

rAðxÞ ¼ rAof1� mGðZðxÞÞg, (6)

with the mass modification function G(Z) having properties similar to those of D(Z) and m representing the
maximum percentage change in density from the undamaged value rAo.
2.2. Modal equation of motion in the presence of damage

Before determining the effect of damage as modeled by Eqs. (5) and (6) on the modal vibration equation, we
consider solutions to the undamaged version of the problem. Setting k ¼ m ¼ 0 and defining the parameter
b4o;n ¼ ðo

2
o;nrAoÞ=EIo, where o2

o;n is the natural frequency of the undamaged nth mode, leads to undamaged
mode shapes of the form

Y o;nðxÞ ¼ C1;n sinðbo;nxÞ þ C2;n cosðbo;nxÞ þ C3;nsinhðbo;nxÞ þ C4;ncoshðbo;nxÞ, (7)

where the unknown coefficients Ci,n are determined from the boundary conditions and the normalization
condition maxY o;nðxÞ ¼ 1. We note that, in general, the undamaged mode shapes have the property that their
fourth derivative with respect to the axial coordinate is simply a scalar multiple of the mode shape itself, with
b4o;n being the scaling factor. We identify Lo;n ¼ p=2bo;n; which is one quarter-wavelength for the nth mode, as a
characteristic axial length scale over which the displacements vary significantly. The details of these
displacements depend upon the exact boundary conditions, but for our purposes it is enough to note that the
displacement magnitude must reach a peak over a distance of 2Lo,n, giving Lo,n a radius-like property for
displacements similar to that of ld for damage. Comparisons between Lo,n and ld turn out to play an important
role in determining the size of the perturbations to the mode shape derivatives caused by damage.

We next introduce a rescaling of Eq. (2) that accounts for the characteristic length scale of the given
undamaged mode Yo,n(x):

x ¼ x=Lo;n; xd ¼ xd=Lo;n; Lk ¼ L=Lo;n; ld ¼ ld=Lo;n; CnðxÞ ¼ Y nðxLo;nÞ; Co;nðxÞ ¼ Y o;nðxLo;nÞ. (8)

Performing these changes, as well as introducing the damage models from Eqs. (5) and (6), leads to the
following:

1

L2
o;n

d2

dx2
EIof1� kDðZðxÞÞg �

1

L2
o;n

d2CkðxÞ

dx2

" #
� o2

nrAof1� mGðZðxÞÞgCnðxÞ ¼ 0. (9)

(Note that ZðxÞ ¼ ðx� xdÞ=ld ¼ ðx� xd Þ=ld ; the rescaling leaves this variable invariant.) Using the definitions
of bo,n and Lo,n, this equation can be simplified to

d2

dx2
1� kDðZðxÞÞ
� � d2CnðxÞ

dx2

� �
�

p
2

� �4
O2

nf1� mGðZðxÞÞgCnðxÞ ¼ 0. (10)

The constant On in Eq. (10) is defined by O2
n ¼ o2

n=o
2
o;n; it can be considered to represent the effect of natural

frequency modification due to damage. This is our assumed general equation for the mode shapes of the
damaged structure.
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3. Numerical studies

We now study the behavior of the general mode shape equation in the presence of damage. Our purpose is to
clarify the properties of the mode shapes and their derivatives, establish their sensitivity to various damage
situations, and provide insight into their use in damage identification algorithms. Our approach is to obtain
numerical solutions to Eq. (10), from which higher order derivatives and other pertinent quantities can be
computed. All solutions were calculated using the bvp4c function in Matlabs with a relative error tolerance of
5� 10�7 and an absolute error tolerance of 5� 10�11. This function enforces C1-continuity of the solution; such
continuity is reasonable for this study since the beam is not expected to break or to form discrete hinges. The
bvp4c procedure requires specification of an initial grid and an approximate solution of the governing equation
on this grid. In this work, the size of the initial grid was set at 220 points, with finer grid resolution in the damage
zone. The solution to the undamaged mode shape equation was taken as the initial approximate solution.

3.1. Simply supported beam problem

3.1.1. General information

The first problem to be considered is a uniform beam of length L ¼ 1200 units simply supported at each
end; Fig. 1 shows the relevant details. (Note that the choice of units is irrelevant to the analysis, as long as the
system is assumed to have beam-like behavior.) We assume that the damage zone is centered at x ¼ 500 units,
while the damage zone radius ld will be given various values to explore the effect of spatial concentration of
damage. In the absence of damage, the following solutions are obtained for the mode shapes of the full
equation and corresponding nondimensional equation:

Y o;nðxÞ ¼ sinðbo;nxÞ; bo;n ¼
np
L

3Co;nðxÞ ¼ sin
px
2

� 	
. (11)

The nondimensional beam length corresponding to each mode is thus Ln ¼ 2n, and xd ¼ 5n/6 for Mode n. We
now wish to compare these solutions to solutions of Eq. (10) for various damage scenarios.

We utilize a very simple model of damage, in which it is assumed that a rectangular cross-sectioned beam
(depth ¼ do, width ¼ wo) loses depth due to damage in a symmetric fashion across the full width from both the
top and bottom. This model is based on the same physical situation as the model used by Christides and Barr
[24] and subsequent researchers, but it employs a much simpler approach to estimate the loss of mass and
stiffness. (No claim is made here regarding the accuracy of this model; it is simply a convenient choice to
illustrate behaviors.) We write the following function for the depth of the beam in the damage zone:

dðxÞ ¼ dof1� dXðZðxÞÞg, (12)

where XðZðxÞÞ describes the variation of depth loss with position and d is the maximum percentage of total loss
of depth. We make the simplifying assumption that XðZðxdÞ ¼ 0Þ ¼ 1. Under this model, loss of area
(and hence loss of mass) is directly proportional to loss of beam depth, and the loss of moment of inertia
(and thus stiffness) is related to the cube of d(x). This allows us to make the following identifications:

kDðZÞ ¼ ð3d� 3d2 þ d3Þ
3dXðZÞ � 3d2XðZÞ2 þ d3XðZÞ3

3d� 3d2 þ d3
; mGðZÞ ¼ dXðZÞ. (13)
2ld

500 700

x

Damage Zone

Fig. 1. The simply supported beam problem.
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We assume that the loss of depth function is as follows:

XðZÞ ¼ cos3ðp
2
Z


 

kÞ; Z



 

p1. (14)

This is a variation of the stiffness modification model used in Ref. [28], where the modification of the exponent
on the cosine function is made in order to guarantee that D(Z) and G(Z) are C2-continuous, even at the edges of
the damage zone. This will ensure that there are no ‘‘spikes’’ or ‘‘jumps’’ in the coefficients of Eq. (10) that
might generate discontinuities in the mode shape or its derivatives. In the following two subsections, the
exponent of |Z| is fixed to k ¼ 1.

3.1.2. Effect of damage level

Our first investigation considered the effect of damage magnitude on the behaviors of the mode shapes and
their derivatives. We assumed a damage zone radius of ld ¼ 12 units, and we examined three levels of damage
as expressed by the loss of depth parameter d: ‘‘small’’ damage (d ¼ 0.003), ‘‘moderate’’ damage (d ¼ 0.03),
and ‘‘large’’ damage (d ¼ 0.3). The corresponding mass loss and stiffness loss parameters were thus m ¼ 0.003
and kE0.008973 for small damage, m ¼ 0.03 and kE0.08733 for moderate damage, and m ¼ 0.3 and
k ¼ 0.657 for large damage. We analyzed the first two modes of the beam; these are associated with
characteristic modal lengths of L1 ¼ 600 units and L2 ¼ 300 units respectively, producing values of
xd ¼ 0.8333 and ld ¼ 0.02 for Mode 1 and xd ¼ 1.6667 and ld ¼ 0.04 for Mode 2.

The results of this analysis are shown in Fig. 2–4. Fig. 2 shows a plot of the absolute value of the differences
of the nondimensional damaged and nondimensional undamaged mode shapes (i.e., CnðxÞ �Co;nðxÞ



 

) for all
three damage scenarios and both modes; Fig. 2(a) shows the results for Mode 1 while Fig. 2(b) displays Mode
2 results. For convenience, the extent of the damage zone is indicated by the dash-dot lines on each plot.
A logarithmic scale is used for the vertical axes due to the range of magnitudes involved. The results indicate
that, even for the large damage case (d ¼ 0.3), the changes in the mode shapes were rather small in magnitude.
The sizes of the mode shape changes do appear to be proportional to the level of damage, as each order of
magnitude increase in d produced roughly an order of magnitude increase in the size of the differences.
However, the differences themselves were at least two orders of magnitude smaller than the size of the mode
shape for large levels of damage and at least four orders lower for small damage. This would indicate a fairly
low level of sensitivity to damage (or at least damage modeled as indicated above). It can also be seen that
maximum differences in magnitude did not necessarily occur within the damage zone, from which we conclude
that the effect of damage on mode shapes (to the extent that it occurs) is not necessarily confined to the
damage zone but can ‘‘leak out’’ to the rest of the mode. This low level of sensitivity to damage as well as the
‘‘leaking’’ of damage effects makes it difficult to uniquely determine the damage location, let alone
characterize its magnitude. These results are consistent with the conclusions of several researchers that mode
shape changes are poor indicators of damage.

Figs. 3(a) and (b) show the results of analyzing the modal curvature differences (i.e., C00nðxÞ �C00o;nðxÞ


 

) in

which several interesting features can be seen. (In this and all subsequent equations, a prime refers to a
derivative with respect to the indicated independent variable.) First, we note that the effect of the damage on
the modal curvatures was most significant within the damage zone; modal curvature changes here were
approximately one to two orders of magnitude greater than in the rest of the beam for both modes. Thus, the
most prominent modal curvature changes due to damage appear to be spatially well-localized, which is an
important feature for any damage indicator. As was true for the mode shapes, the levels of curvature
change increased essentially in proportion to the level of damage. Finally, sensitivity to damage (as indicated
by the peak value of modal curvature change) was greater than what was observed for mode shape
changes, although small levels of damage still produced fairly small curvature changes. These results lead us to
conclude that modal curvatures offer an improved ability to locate damage as compared to mode shape
changes; again, this is again consistent with results from the literature. However, the sensitivity of modal
curvature changes to small damage levels (and, to a lesser extent, moderate damage levels) still appears to be
somewhat low.

The analysis of modal fourth derivative changes (i.e., C0000n ðxÞ �C0000o;nðxÞ


 

) can be found in Figs. 4(a) and (b).

Many of the features observed in Fig. 3 were also observed in these figures, including a well-localized
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Fig. 2. Absolute value of the difference between damaged and undamaged nondimensional mode shapes due to changes in damage level.

d ¼ 0.003, d ¼ 0.03, d ¼ 0.3, damage zone. (a) Mode 1, (b) Mode 2.
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indication of the damage and close proportionality between the level of damage and the magnitude of the
fourth derivative change. Also worth noting is the increased sensitivity to damage, as evinced by the large peak
values of the derivative changes, even for the ‘‘small’’ damage case. Thus, modal fourth derivative changes also
appear to be good candidates for use in damage identification. Note that the performance of modal derivative
changes in the presence of noise and other error sources is not considered here—the question of robustness will
be pursued in future work.

3.1.3. Effect of damage zone size

Next, we considered the influence of damage zone size on the modal properties. We assumed ‘‘small’’
damage, using the representative value of d ¼ 0.003 for the maximum loss of depth. (Thus, m ¼ 0.003 and
kE0.008973 are the mass and stiffness loss parameters, respectively.) We again considered the first two modes
of vibration only and examined three scenarios for the damage zone size: ld ¼ 3, 30, and 300. Thus, the values
of ld are ld ¼ 0.005, 0.05 and 0.5 for Mode 1 and ld ¼ 0.01, 0.1 and 1.0 for Mode 2.

Figs. 5–7 summarize the results of this study. In each figure, the size of the damage zone is indicated by
appropriate vertical lines. We first note, in Fig. 5, that the size of the damage zone had relatively little influence
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Fig. 3. Absolute value of the difference between damaged and undamaged nondimensional modal curvatures due to changes in damage

level. d ¼ 0.003, d ¼ 0.03, d ¼ 0.3, damage zone. (a) Mode 1, (b) Mode 2.
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upon the behavior of the mode shape changes other than to cause modifications in the overall magnitude of
the changes. (This conclusion is not completely supported by the ld ¼ 1.0 case in Fig. 5(b), although the
behavior of C2ðxÞ �Co;2ðxÞ



 

 for 0pxp0.6667 is consistent with the conclusion.) In all cases presented, the
sizes of the mode shape changes were rather small and showed no clear localization within the indicated
damage zone. Each order of magnitude increase in the size of ld, however, caused an order of magnitude
change in the levels of CnðxÞ �Co;nðxÞ



 

, leading us to hypothesize that the latter quantity is directly
proportional to ld.

When the changes in modal curvatures were considered, however, some new trends were discovered. Fig. 6
shows that well-localized changes in C00nðxÞ �C00o;nðxÞ



 

 occurred when the damage zone was small or
moderately sized, but the changes were not well localized for the large damage zone. Values of
C00nðxÞ �C00o;nðxÞ


 

 outside of the relevant damage zones appeared to behave in a manner quite similar to
that observed for the mode shape changes, i.e., small values that are roughly proportional to the size of ld.
However, sharp rises in magnitude change were found within the damage zones when the damage
zone size was not large. Even more interestingly, the peak values of C00nðxÞ �C00o;nðxÞ



 

 were approximately
equal across all of the cases considered—the values ranged from 0.83� 10�2 (Mode 2, ld ¼ 1.0) to 2.12� 10�2
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Fig. 4. Absolute value of the difference between damaged and undamaged modal nondimensional fourth derivatives due to changes in

damage level. d ¼ 0.003, d ¼ 0.03, d ¼ 0.3, damage zone. (a) Mode 1, (b) Mode 2.
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(Mode 1, ld ¼ 0.005). Thus, damage zone sizes seem to affect modal curvatures in distinct ways inside versus
outside of the damage zone: curvature changes appear to be small but directly proportional to ld outside of the
damage zone, whereas they are larger but roughly independent of ld within the damage zone.

Finally, Fig. 7 reveals equally interesting behaviors in the modal fourth derivative changes due to damage.
In this situation, the damage effect appeared to be well localized for all cases considered, including the ‘‘large’’
damage zone cases. Behaviors of C0000n ðxÞ �C0000o;nðxÞ



 

 outside of the damage zones followed the pattern of small
values and direct proportionality to ld, but behaviors within the damage zones were noticeably different. Of
particular interest is the observation that the smallest damage zone cases produced the largest peak values of
C0000n ðxÞ �C0000o;nðxÞ


 

, suggesting an inverse proportionality to ld. This idea was further supported by the fact that
each order of magnitude increase in ld produced a roughly two order of magnitude decrease in peak values of
C0000n ðxÞ �C0000o;nðxÞ


 

. Thus, we hypothesize that the largest values of the modal fourth derivative changes should
be inversely proportional to l2d , which implies that these quantities should be particularly sensitive to damage
of small spatial extent. This feature is quite desirable for a damage indicator, so its use in structural health
monitoring seems promising. Further features of the modal fourth derivative must be determined, however,
before it can be deemed acceptable for this purpose.
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Fig. 5. Absolute value of the difference between damaged and undamaged nondimensional mode shapes due to changes in damage zone

size. ld ¼ 0.01, damage zone for ld ¼ 0.01, ld ¼ 0.1, damage zone for ld ¼ 0.1, ld ¼ 1.0,

damage zone for ld ¼ 1.0. (a) Mode 1, (b) Mode 2.
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3.1.4. Influence of damage model

In this section, we explore the influence of the damage model on the modal response. To this end, we again
used the simplified damage model indicated in Eq. (13), but we varied the parameter k in the loss of depth
function shown in Eq. (14) so as to change the rate by which the depth varies within the damage zone. The
resulting stiffness modification functions are shown in Fig. 8 for various values of k. We chose three values of
k for this study: k ¼ 1, 2, and 4. We note that increasing k expands the range of values within the damage zone
for which the stiffness modification function stays close to unity. Since D(Z) is required to go to zero at the
edges of the boundary zone, this behavior leads to a more abrupt variation from fully damaged to undamaged
as k increases. These effects reveal themselves most dramatically in the variations of D0(Z) and D00(Z) with k,
shown in Fig. 9. We observe that larger k values result in very large values of D0(Z) and D00(Z) near the edges of
the damage zone, particularly for D00(Z). Recall that D(Z) also depends upon the assumed level of damage d; we
used d ¼ 0.025 for our analysis. (Similar results were observed when other levels of damage were used.) As for
the mass modification function, we set m ¼ d and fixed GðZÞ ¼ HðZþ 1Þ �HðZ� 1Þ; where Hð�Þ is the
Heaviside step function. This choice is not, strictly speaking, consistent with the simplified damage model, as it
‘‘decouples’’ the variations in mass from the variations in stiffness. We chose to not vary G(Z) so as to
concentrate upon stiffness modification effects. Note that our choice of G(Z) maximizes the possible effects on
mass loss on the mode shapes and their derivatives.
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Fig. 6. Absolute value of the difference between damaged and undamaged nondimensional modal curvatures due to changes in damage

zone size. ld ¼ 0.01, damage zone for ld ¼ 0.01, ld ¼ 0.1, damage zone for ld ¼ 0.1, ld ¼ 1.0,

damage zone for ld ¼ 1.0. (a) Mode 1, (b) Mode 2.
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In our studies, we chose to consider Mode 1 only, and we fixed the damage location and damage radius to
be xd ¼

5
6
and ld ¼

1
6
. In Fig. 10, we plot the changes in second derivative, third derivative, and fourth

derivative of the first mode shape for varying values of k, showing a closer view of the damage zone. Note that
we are not plotting the absolute value of the changes in these derivatives but rather the actual difference. An
extremely interesting result is observed when Fig. 10 is compared to the stiffness modification function and its
derivatives (as shown in Figs. 8 and 9). In Fig. 10(a), we note that the behavior of the change in second
derivative due to damage is quite similar to that of the stiffness modification function as k is varied. That is to
say, as k was increased, the quantity C001ðxÞ �C00o;1ðxÞ changed from being sharply peaked in the center of the
damage zone to making a more abrupt transition at the edges of the damage zone. In Fig. 10(b), we observe
that the behavior of C0001 ðxÞ �C000o;1ðxÞ mimicked that of D0(Z) as k was changed, with the peak values moving
closer to the edges of the damage zone with increasing k. Finally, Fig. 10(c) displays a strong correlation
between C00001 ðxÞ �C0000o;1ðxÞ and D00(Z). Most notably, the locations of the large peaks observed in C00001 ðxÞ �
C0000o;1ðxÞ appear to correspond quite well to the locations of peak values of D00(Z). These results strongly suggest
that there is a relationship between the (n�2)th derivative of the stiffness modification function and changes in
the nth modal derivative. One caveat, however, must be applied to this observation. A careful examination of
Fig. 10 shows that the modal derivative changes are not exactly proportional to D(Z) or its derivatives;
Fig. 10(a), for example, shows a clear modulation of the second derivative change in regions where D(Z) is
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Fig. 7. Absolute value of the difference between damaged and undamaged modal nondimensional fourth derivatives due to changes in

damage zone size. ld ¼ 0.01, damage zone for ld ¼ 0.01, ld ¼ 0.1, damage zone for ld ¼ 0.1,

ld ¼ 1.0, damage zone for ld ¼ 1.0. (a) Mode 1, (b) Mode 2.
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effectively ‘‘flat’’. Thus, other factors must be at work to produce the overall behavior of the modal derivative
changes.

3.1.5. Effect of mass modeling

As mentioned previously, it is not common for researchers to give much consideration to mass modeling in
their investigations. Researchers are often explicitly considering cracks as the source of damage, which is
associated with very little mass loss. However, other loss mechanisms, such as corrosion or impact damage,
can have noticeable mass loss, which conceivably could affect the behavior of the modal changes. To see
whether or not this idea is justified, we chose to study the effect of different mass loss models on the higher
order modal derivatives. We once again employed the simplified damage model described by the Eqs. (13) and
(14) but, similar to the procedure of Section 3.1.4, we decoupled the variation of the stiffness modification
function from that of the mass modification function by fixing k ¼ 1 when calculating D(Z) but using
various k values when determining G(Z). Note that as k-N, the mass modification function
GðZÞ ! HðZþ 1Þ �HðZ� 1Þ, a situation we labeled as the ‘‘full mass loss’’ limit; k-0 leads to G(Z)E0,
which we refer to as the ‘‘no mass loss’’ limit.

Fig. 11 shows the results of varying the mass loss model on the changes in mode shapes and modal derivatives
under the assumption of top and bottom through-thickness cracks. More specifically, we considered both first
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Fig. 8. Various stiffness modification functions for the simplified damage model with d ¼ 0.025 and X Zð Þ ¼ cos3ððp=2Þ Z


 

kÞ; Z



 

p1:
k ¼ 1, k ¼ 2, k ¼ 4.

T.M. Whalen / Journal of Sound and Vibration 309 (2008) 426–464438
mode and fifth mode vibration of the beam, for which we have L ¼ 2 and xd ¼ 0.83333 (Mode 1) and L ¼ 10
and xd ¼ 4.16667 (Mode 5). The damage radius was set to 40 units, leading to ld ¼ 0.06667 for Mode 1 and
ld ¼ 0.33333 for Mode 5. The damage level was taken as d ¼ 0.30, resulting in m ¼ 0.30 and k ¼ 0.657. Shown
in this figure are the resulting changes in modal displacements, curvatures, and fourth derivatives of the damaged
beam for both modes. Mode 1 showed almost no sensitivity to the choice of mass model, with only small
variations in mode shape changes. Mode 5 had a somewhat higher level of sensitivity to mass model choice, as
evinced by the wider range of mode shape and modal curvature changes, although this sensitivity diminished as
the derivative order increased. Similar behaviors are observed in Fig. 12 when a lower damage level was used. In
this case, we lowered the damage scales to d ¼ m ¼ 0.03 and k ¼ 0.087327. In fact, the variations are almost
identical to those seen in Fig. 11, although the overall scale is lower.

Next, we switched our crack modeling assumption to through-thickness cracks in the middle of the section.
We chose to study the same vibration modes, damage locations, and damage radii as the previous cases, but
the loss parameters were modified to reflect the change in damage geometry. It can be shown that, while m ¼ d
still holds, the stiffness loss parameter relates to the loss of section parameter as k ¼ d3. Thus, the high damage
level case gives us m ¼ 0.30 and k ¼ 0.027, while the moderate damage scenario has m ¼ 0.03 and
k ¼ 2.7� 10�5. Hence, mass loss scales are larger than the corresponding stiffness loss scales under
this damage assumption. Figs. 13 (d ¼ 0.30) and 14 (d ¼ 0.03) are the equivalents of Figs. 11 and 12 for this
mid-section crack situation. There is an overall greater sensitivity to mass modeling present in this case; even
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Fig. 9. Derivatives of the various stiffness modification functions. k ¼ 1, k ¼ 2, k ¼ 4. (a) D0(Z), (b) D00(Z).
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the fourth order modal derivative changes show some influence due to mass modeling. While the main effect of
changing the mass model appears to be a simple modulation in the amplitudes of the damage-induced changes,
there are some examples of minor variations in spatial trends (e.g., the appearance of the small downward
peak in C005ðxÞ �C00o;5ðxÞ as k tends towards infinity) resulting from mass model changes. Thus, mass modeling
choices appear to be more important for the damage scenario of mid-section cracking than is true for the top/
bottom crack scenario. This idea will be explored in more detail in Section 3.2.2.

3.2. Cantilevered beam problem

3.2.1. Effect of damage location

The next problem considered was that of a cantilevered beam with damage. Fig. 15 shows the relevant
details; in this case, we do not specify a fixed location for the damage zone. The nondimensional form of the
undamaged modal solutions is

Co;nðxÞ ¼ An cos
pLn

2
þ cosh

pLn

2
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sin

px
2
� sinh

px
2
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Fig. 10. Difference between damaged and undamaged nondimensional first mode properties due to changes in stiffness modification

function. k ¼ 1, k ¼ 2, k ¼ 4. (a) second derivative, (b) third derivative, (c) fourth derivative.
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where the amplitude coefficient An ¼ 2 tanhðpLn=2Þ � 2 tanðpLn=2Þ
� ��1

. (Note that this solution normalizes
the tip displacement for each mode.) The values of Ln must satisfy the condition cosðpLn=2Þ coshðpLn=2Þ ¼ �1
arising from the eigenvalue problem for cantilevered beam vibration. (See Ref. [21] for details.) It can be
shown that, for sufficiently large values of n, LnE2n�1 is a reasonable approximation for the nondimensional
beam length.

Solutions of the cantilevered beam problem display the same properties as discussed in Section 3.1 for the
simply supported beam; for sake of brevity, specific results are not shown. One property that can be studied
more systematically using the cantilevered beam problem is the influence of damage location on modal
behaviors. To do so, we considered Mode 2 vibrations of the beam. The nondimensional length of the beam
for this mode is L2 ¼ 2.9884; we assumed a fixed nondimensional damage zone radius of ld ¼ 0.05 and
used the Eq. (13) damage model with k ¼ 1 and a damage level of d ¼ 0.03. (The stiffness loss and mass
loss parameters are kE0.08733 and m ¼ 0.03, as previously computed in Section 3.1.2 for the ‘‘moderate’’
damage case.)

Fig. 16 summarizes results obtained for this study, in which six separate damage locations (xd1 ¼ 2.34,
xd2 ¼ 1.40, xd3 ¼ 0.65, xd4 ¼ 1.58, xd5 ¼ 0.06, and xd6 ¼ 2.94) were specified across the beam. Damage
locations at the ends of the beam were shifted inwards in order to prevent interactions between the damage
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Fig. 11. Difference between damaged and undamaged nondimensional modal properties for various mass loss models and top-bottom

through-thickness cracks with high damage levels. k ¼ 0, k ¼ 1, k ¼ 4, k ¼N. (a) Mode 1 shape, (b) Mode 1

curvature, (c) Mode 1 fourth derivative, (d) Mode 5 shape, (e) Mode 5 curvature, (f) Mode 5 fourth derivative.
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zones and the boundaries. The basis for selecting these points is that each one is a location at which either the
second mode or one of the second mode derivatives is approximately equal to zero. In particular, Co;2ðxÞ � 0
for x ¼ xd1 and xd5,C0o;2ðxÞ � 0 for x ¼ xd2 and xd5,C00o;2ðxÞ � 0 for x ¼ xd3 and xd6, andC0000o;2ðxÞ � 0 for x ¼ xd4

and xd6. (The approximations are less accurate for x ¼ xd5 and xd6 due to the shifts away from the boundaries.)
In Fig. 16(a), we see that changes in damage location did produce different effects upon the mode shape
changes, although no clear trends in behavior were discerned. The overall magnitudes of the changes were
small and not well localized spatially, as would be anticipated based upon the results of Section 3.1. The
impact of varying damage location becomes much clearer, however, when Figs. 16(b) and (c) are studied. In
these figures, the changes in modal curvature and modal fourth derivative have much better spatial
localization, so the main impact of varying xd can be seen as a noticeable variation in magnitudes of the
resulting modal changes. The observed changes had their largest magnitudes for x ¼ xd5 ¼ 0.06, while more
moderate changes were observed for x ¼ xd2 ¼ 1.40, x ¼ xd4 ¼ 1.58, and x ¼ xd1 ¼ 2.34. Finally, very small
changes were associated with two damage locations, x ¼ xd3 ¼ 0.65 and x ¼ xd6 ¼ 2.94. In fact, the changes in
modal behavior associated with xd6 are barely visible in Figs. 16(b) and (c), which contrasts significantly with
the prominent change in mode shape seen in Fig. 16(a) when this damage location is used. Since the damage
itself was identical across these six cases, these effects must be attributable solely to the influence of the
location.
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Fig. 12. Difference between damaged and undamaged nondimensional modal properties for various mass loss models and top-bottom

through-thickness cracks with moderate damage levels. k ¼ 0, k ¼ 1, k ¼ 4, k ¼N. (a) Mode 1 shape, (b)

Mode 1 curvature, (c) Mode 1 fourth derivative, (d) Mode 5 shape, (e) Mode 5 curvature, (f) Mode 5 fourth derivative.
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The common feature of the two locations that indicated very low levels of damage (i.e., x ¼ xd3 and xd6) is
that the undamaged mode shape has nearly zero curvature at these points. Moreover, large values of the
modal curvature (e.g., near x ¼ 0) tend to correspond to large indications of damage in the second and fourth
derivatives. Hence, we surmise that the underlying modal curvature of the beam plays an important role in
determining sensitivity of the higher derivatives to damage. (While not shown here, it is worth noting that the
third derivative displayed the same sort of behavior as observed in Figs. 16(b) and (c), while the modal slope
changes were similar in nature to the mode shape changes seen in Fig. 16(a).) This relationship is emphasized
in Fig. 17, in which six damage locations were chosen at roughly uniform spacing across the beam.
(Again, damage locations near the ends of the beam are shifted inwards.) The damage scenario used in
conjunction with Fig. 16 was utilized here. We plot the change in second mode modal curvature due to
damage at each of these locations. In addition, a scaled version of the second derivative of the undamaged
mode shape is plotted. (The scaling factor is k, the stiffness loss coefficient. The reasons for this choice will be
discussed in Section 4.) There is a very good level of agreement between the observed changes in modal
curvature and the scaled modal curvature of the undamaged beam. Thus, this study strongly suggests that
damaged-induced changes in the higher order modal derivatives are influenced by the underlying modal
curvature of the undamaged system.
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Fig. 13. Difference between damaged and undamaged nondimensional modal properties for various mass loss models and mid-section

through-thickness cracks with high damage levels. k ¼ 0, k ¼ 1, k ¼ 4, k ¼N. (a) Mode 1 shape, (b) Mode 1

curvature, (c) Mode 1 fourth derivative, (d) Mode 5 shape, (e) Mode 5 curvature, (f) Mode 5 fourth derivative.
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3.2.2. Magnitudes of governing equation terms

In anticipation of the formal analyses to be discussed in Section 4, we now numerically investigate the
magnitudes of the various terms that govern the behavior of the damaged mode shapes. Rather than studying
Eq. (10), however, we define a function FnðxÞ � CnðxÞ �Co;nðxÞ that we call the ‘‘discontinuity’’ function.
Fn(x) describes the damage-induced differences in the nondimensional mode shape. Introducing this function
into Eq. (10) results in
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While this equation is more complicated than Eq. (10), the behavior of the component terms is more
easily seen using Eq. (16). We designate the first and second term on the left-hand side of this equation as T1(x)
and T2(x), respectively, while the first and second term on the right-hand side of the equation are labeled T3(x)
and T4(x).

Numerical investigations of Eq. (16) for various combinations of parameters led to the identification
of three distinct types of responses. These responses are illustrated in Fig. 18 for the problem of a canti-
levered beam with a mid-section crack of damage level d ¼ 0.02, resulting in m ¼ 0.02 and k ¼ 8.0� 10�6.
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Fig. 14. Difference between damaged and undamaged nondimensional modal properties for various mass loss models and mid-section

through-thickness cracks with moderate damage levels. k ¼ 0, k ¼ 1, k ¼ 4, k ¼N. (a) Mode 1 shape, (b)

Mode 1 curvature, (c) Mode 1 fourth derivative, (d) Mode 5 shape, (e) Mode 5 curvature, (f) Mode 5 fourth derivative.
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Fig. 15. The cantilevered beam problem.
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(These results are representative of other damage scenarios as well.) We show results for Mode 1 vibration
with L1 ¼ 1.19373, xd ¼ 0.53111, and varying damage radii ld. The simplified damage model was used with
k ¼ 1 for the loss of section exponent.

For the first type of response, shown in Fig. 18(a) for the case ld ¼ 0.002, T1(x) and T3(x) are nearly
identical within the damage zone, and both of these terms are significantly larger than T2(x) and T4(x). While
the degree to which T1(x) and T3(x) exceed T2(x) and T4(x) is very sensitive to the parameter values, what
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Fig. 16. Difference between nondimensional damaged and undamaged second mode properties due to changes in damage location.

xd ¼ 2.34, xd ¼ 1.40, xd ¼ 0.65, xd ¼ 1.58, xd ¼ 0.06, xd ¼ 2.94. (a) mode shape, (b) modal

curvature, (c) modal fourth derivative.
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characterizes the behavior of this situation is the ability to neglect the changes in inertial effects that
arise from T2(x) and T4(x) and assume that T1(x)ET3(x), which involves only stiffness effects, completely
determines the discontinuity function inside the damage zone. Because of this, we call this behavior
‘‘stiffness-dominated’’. Note that the magnitudes of T1(x) and T3(x) are fairly large compared to the scale
of the damage; as a consequence, some derivative of the discontinuity function in the damage zone must
also be large.

Fig. 18(c) shows the results for ld ¼ 0.2, illustrating a second type of behavior. Here, it is now T1(x) and
T4(x) that are the most important terms of the equation in the damage zone; T2(x) and T3(x) are relatively
insignificant. Thus, T1(x)ET4(x) is a reasonable approximation for Eq. (16) inside the damage zone, which
changes the response of the discontinuity function in that region. This response was termed ‘‘mass-affected’’,
since the stiffness effects of T1(x) are now influenced by the inertial effects of T4 xð Þ. Finally, Fig. 18(b) shows
the results of the intermediate case ld ¼ 0.06, in which we observe nontrivial contributions from all terms
except T2(x). The relevant approximation of Eq. (16) in the damage zone for this case is T1(x)ET3(x)+T4(x),
since only the inertial term T2(x) can be deemed insignificant. Because both inertial and stiffness effects from
the right-hand side of Eq. (16) come into play, we describe the response as ‘‘balanced’’. Note that the overall
scale of the Eq. (16) terms in the balanced and mass-modified regimes is comparable to that of the damage
scale, consistent with a much lower overall response from the discontinuity functions for these cases.
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Fig. 17. Difference between nondimensional damaged and undamaged second mode curvatures due to changes in damage location

compared to a scaled version of the undamaged second mode curvature. xd ¼ 0.10, xd ¼ 0.60, xd ¼ 1.20,

xd ¼ 1.80, xd ¼ 2.40, xd ¼ 2.90, kC00o;2.
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There are two other general comments to be made regarding the magnitudes of the Eq. (16) terms. First, it
can be shown that, outside of the damage zone, the term T3(x) is identically zero and thus plays no role in
determining the behavior of the discontinuity function there. No general trends were observed among the
remaining three terms outside of the damage zone, as they were usually all of the same approximate scale.
Thus, there is no distinct characterization of the discontinuity function outside of the damage zone. Second, it
should be mentioned that the mass-affected and balanced responses were relatively rare occurrences. The vast
majority of responses studied can be classified as stiffness-dominated, especially when the assumption of top
and bottom through-thickness cracks was made. The possibility of generating balanced or mass-modified
responses depends crucially upon the parameter regime being studied; this issue will be explored more deeply
in Section 4.

3.3. Continuous beam problem

3.3.1. General information

The final problem to be considered is that of a beam continuous across an intermediate support. This
problem is chosen because it more closely emulates the geometry of actual bridges as compared to the previous
problems studied. In the same spirit, we will employ a more realistic flexural rigidity model, namely the model
for symmetric open cracks proposed by Christides and Barr [24] and shown in Eq. (4). (The use of enhanced
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Fig. 18. Magnitudes of the four terms of Eq. (16) for a beam with mid-section cracks and various nondimensional damage radii.

T1(x), T2(x), T3(x), T4(x). (a) ld ¼ 0.002, (b) ld ¼ 0.06, (c) ld ¼ 0.2.
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versions of the Christides–Barr model—e.g., the model used in Ref. [27] —will be the subject of future work.)
The relevant details of the problem we are considering are shown in Fig. 19. For simplicity, we assume a two-
span beam with equal spans of length 1200 units. Note that the Christides–Barr stiffness model requires
knowledge of the depth of the beam; a total depth of 36 units is assumed.

Turning our attention to the stiffness modification function, there are three parameters that must be
specified in the function shown in Eq. (4). The stress profile parameter a was studied by Shen and Pierre [25],
who obtained the value a ¼ 1.936 using a Galerkin procedure; this is the value used in our investigation. Next,
the parameter d represents the half-depth of the beam, and thus d ¼ 18 units in our problem. Finally, the
parameter m can be shown to be the ratio of the undamaged cross section’s moment of inertia over the
moment of inertia for the cracked section. Thus, we should have m41 always but mE1 for small levels of
damage. Observing that the maximum reduction in stiffness occurs at x ¼ xd, we find that m is related to the
parameter k by m ¼ (1�k)�1.

As was indicated in Section 2.1, a practical damage zone size can be established for the Christides–Barr
model by setting a threshold below which the reduction in flexural rigidity from the undamaged value can be
considered to be negligible; we define our damage zone according to the criterion

EIðxÞ � EIo



 


EIo

o�, (17)
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Fig. 19. The continuous beam problem.
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where e51 is a small parameter. Using this result and the previously discussed parameters, we find that the
damage zone radius is related to k and e by

ld ¼
d

2a
ln
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� 	
þ ln

k
1� k

� �� �
(18)

and therefore the stiffness modification function can be represented as

kDðZÞ ¼ 1� 1þ
k=ð1� kÞ

expðflnðð1� �Þ=�Þ þ lnðk=ð1� kÞÞgjZjÞ

� ��1
. (19)

It can be shown that, for a fixed value of k, each order of magnitude decrease in the size of e gives an increase
in the damage zone radius of approximately 10.7 units. For our problem, this means that decreasing e by one
order of magnitude causes the size of ld to increase by roughly 3.5% for Mode 1, with greater increases for the
higher modes. Hence, using stricter tolerances in Eq. (17) can cause ld to become relatively large compared to
the other parameters. Numerical tests revealed that there is a limiting value of e such that any further lowering
of the threshold produces negligible changes in output. In our work, e is always chosen such that this limit has
been reached.

We note that this stiffness model does not account for mass loss, so we will need to impose our own mass
modification model. We chose to mimic the behavior of the simplified damage model, in which it can be shown
that G(Z) and D(Z) are essentially the same function for low levels of damage. Thus, we employ Eq. (19) to
describe the mass modification function G(Z), replacing D(Z) with G(Z) and k with m. It can be shown that the
percent reduction in area corresponding to a given value of m scales as m�3 for through-thickness cracks, and
thus we expect the maximum loss of mass (assumed to be proportional to area) to scale as 1�m�3. Thus, we
take the parameter m to be given by m ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffi
1� k3
p

using the previously found relationship between m and k.
The mode shapes of the undamaged beam fall into two categories, distinguished by their symmetry with

respect to the center support. The odd-numbered modes are anti-symmetric with respect to the center and have
the form

Co;2n�1ðxÞ ¼ sin
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2

� 	
, (20)

with a corresponding nondimensional beam length L2n�1 ¼ 4n. These modes are identical to the even-
numbered modes from the simply supported beam problem (see Eq. (11)). As for the even-numbered modes of
this problem, they are symmetric with respect to the center and can be written as
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where the nondimensional beam length L2n satisfies the relation tanððp=4ÞL2nÞ ¼ tanhððp=4ÞL2nÞ. For
sufficiently large values of L2n, it can be shown that L2nE4n+1. See Ref. [30] for details. The normalization
parameter A2n ¼ 0.93508, with the maximum modal displacement always occurring at the peaks just before
and after the central support.

3.3.2. Effectiveness of higher order derivatives as damage indicators

To illustrate the effectiveness of higher order derivatives as damage indicators, we simulated the damage
location process by examining the changes induced in mode shapes, modal curvatures, and modal fourth
derivatives at discrete locations in the beam for varying levels of stiffness loss. In particular, we examined
Mode 2 vibration of the continuous beam (L2 ¼ 4.9995) and a fixed location for the damage (wd ¼ 1.75). We
employed Eq. (19) as our stiffness loss model for four values of stiffness loss: k ¼ 0.30, 0.10, 0.03, and 0.01.
(Note that the nondimensional damage zone radius varied only from 0.10330 to 0.066998 as k decreased; this
reflects the dependence of ld on e, which was set at e ¼ 10�5.) We chose to measure the response at eleven
locations along the first span of the continuous beam, with the spacing between measurement locations
taken to be 108 units. With this choice of spacing, it can be shown that the eighth sensor is located closest
to the damage, at x ¼ 1.80. This reflects the most common measurement situation, in which a sensor
(for a sufficiently refined grid) is close to but not on top of a damage location.

The results of this study are shown in Figs. 20–22. (For simplicity, only the left span of the beam—the one
containing the damage—is shown.) In these figures we plot the percent change in the various modal quantities
from their expected ‘‘undamaged’’ values for the previously selected stiffness loss levels. In Fig. 20, we indicate
the percent change in the actual mode shape due to the four damage levels. As one would expect, decreasing
the value of k caused an overall decrease in the magnitude of the percentage changes, with virtually no change
observed for the lowest stiffness loss level. Even for the most severe damage case (k ¼ 0.30), the percent
changes in mode shape are relatively low; in fact, they are always lower in magnitude than the corresponding
stiffness loss value. Moreover, the damage location cannot be accurately determined from these changes, as
maximum changes tended to occur near the central support. (This is somewhat an artifact of the ‘‘small
divisors’’ problem, since the mode shape values themselves are fairly small as one approaches the central
support.) Once again, we are led to the conclusion, consistent with that found by other researchers, that mode
shape changes are only fair indicators of the presence of damage and are not good indicators of damage
location.

When one examines the percent changes in modal curvature (Fig. 21), this situation improves noticeably.
For the larger values of stiffness loss studied here (k ¼ 0.30 and 0.10), one finds very large percent changes in
the modal curvature at the sensor closest to the damage location—a very strong indicator of both the location
and severity of the damage. However, the induced changes in curvature are less distinct when the smaller
stiffness loss parameters (k ¼ 0.03 and 0.01) are considered, making the location of the damage less obvious.
Still, the modal curvature values in general seem to provide a good indication of damage location and severity,
although its sensitivity to low levels of damage may not be strong.

Similar features are noted upon considering the percent changes in modal fourth derivative (Fig. 22). We
first note that the higher levels of stiffness loss are associated with large indications of percent change,
although not as large as those observed in the modal curvatures. When the lower stiffness loss levels were
considered, we found smaller but significant deviations in the modal fourth derivative values. In all cases, the
damage location is distinctly indicated by the change in modal fourth derivative. Thus, both the modal
curvatures and modal fourth derivatives appear to be strong damage indicators for relatively high levels of
damage, and the modal fourth derivatives appear to perform reasonably well at relatively small damage levels.

4. Approximations for higher order derivative discontinuities

4.1. General considerations

Having studied the influence of damage on the mode shape properties numerically, we now wish to obtain
some analytical approximations of the higher derivatives of the discontinuity function Fn(x) via a formal
analysis. This entails finding approximate relations in Eq. (16) that can simplify this equation and thus permit
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Fig. 20. Percent change in mode shape values at selected locations for various k values. � k ¼ 0.30, * k ¼ 0.10, J k ¼ 0.03, +k ¼ 0.01.
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formal solutions to be found. To pursue this, we introduce the small value e51 and scale the damage
parameters as follows:

ld ¼ l̄d�
‘; k ¼ k̄�k; m ¼ m̄�m. (22)

(The exponent k is not related to the exponent in the loss of depth function shown in Eq. (14).) All barred
quantities are assumed to be Oð�0Þ, and k and m are required to be nonnegative. This requirement stems from
the fact that k and m represent percent changes in physical quantities that cannot exceed 100%. Notice that
OðkÞ ¼ Oð�0Þ or OðmÞ ¼ Oð�0Þ essentially implies that a substantial majority of the cross section has been lost
and thus that the structure is in a state of impending collapse; such situations are extreme cases that are not
expected to be encountered in general structural health monitoring applications. Therefore, k40 and m40 are
reasonable assumptions on the loss coefficients. Notice also that the exponent l could legitimately take on
either positive or negative values—the latter case corresponds to the situation in which the extent of the
damage is comparable to or significantly larger than the modal length scale Lo,n. This is most likely to occur
when the damage is due to the action of a global damaging mechanism or when the mode under consideration
has a very high frequency and thus a correspondingly short wavelength. For simplicity of our analysis, we do
not consider this possibility and therefore assume that l40. Finally, we note that p4=16 represents an Oð�0Þ
quantity; this becomes obvious as e-0.

Before commencing with the analysis, we make three observations. First, the rescaling of Yo,n(x) to Co;nðxÞ
introduced via Eq. (8) guarantees that the normalization assumption on Yo,n(x) transfers directly to Co;nðxÞ.
This result, along with the assumed properties of the functions D(Z(x)) and G(Z(x)), shows that these three
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Fig. 21. Percent change in modal curvature values at selected locations for various k values. � k ¼ 0.30, * k ¼ 0.10, J k ¼ 0.03,

+k ¼ 0.01.
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functions are finite-sized (i.e., Oð�0Þ) over most of the damage zone. In other words, while small values are
possible, one typically expects these functions not to be small. Second, the rescaling of the mode shapes leads
to the requirement that the jth derivative of Co;nðxÞ be proportional to ðp=2Þj. Thus, all derivatives of Co;nðxÞ
with respect to x are Oð�0Þ quantities in general. (It may be argued that ðp=2Þj becomes large for a large enough
value of j, which implies that the corresponding derivative is large. However, since the magnitude of the
derivative is still bounded, Oð�0Þ is still a reasonable estimate.) Third, the assumed properties of D(Z) allow us
to argue that both the first and second derivative of D(Z) with respect to Z must take on Oð�0Þ values over at
least part of the damage zone. The details of this argument are presented in Section A.1 of the Appendix A.
Again, it is emphasized that neither the derivatives of Co;nðxÞ with respect to x nor the derivatives of D(Z) with
respect to Z are restricted from taking on small values; indeed, the derivatives of D(Z) with respect to Z are zero
outside of the damage zone, so continuity requires that they stay small for at least some portion (however
miniscule) of the damage zone near the edges. However, these observations permit us to make reasonably
generic conclusions regarding the behavior of the derivatives of Fn(x), which is our main concern.

4.2. Formal analysis

4.2.1. Case 1: inside the damage zone—stiffness-dominated behavior

Recalling the discussion in Section 3.2.2, we anticipate that there are three distinct approximations that can
be made on Eq. (16) to determine the behavior of Fn(x) in the damage zone. In this section, we investigate the
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Fig. 22. Percent change in modal fourth derivative values at selected locations for various k values. � k ¼ 0.30, * k ¼ 0.10, J k ¼ 0.03,

+k ¼ 0.01.
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most commonly observed situation, namely stiffness-dominated behavior. We assume that k ¼ m, which
requires that the stiffness loss and mass loss effects be comparable in magnitude. (This was typical of the
stiffness-dominated cases studied; the case kam will be discussed in a later section.) Based on these
assumptions, we draw a series of conclusions regarding the orders of terms in Eq. (16), starting with the right-
hand side of this equation.

The term T3(x) represents the effects of changes in the underlying internal bending moments due to damage.
We expand this to give:

T3ðxÞ ¼
d2

dx2
kDðZðxÞÞ

d2Co;nðxÞ

dx2

� �
¼ kDðZÞC0000o;nðxÞ þ

2k
ld

D0ðZÞC000o;nðxÞ þ
k

l2d
D00ðZÞC00o;nðxÞ. (23)

Once again, D(Z(x)) and Co;nðxÞ and their derivatives are generically Oð�0Þ within the damage zone, so the
coefficients determine the order of this term. The orders of the coefficients are

k ¼ Oð�kÞ;
2k
ld

¼ Oð�k�‘Þ;
k

l2d
¼ Oð�k�2‘Þ. (24)

We observe that the coefficient of the third term must have largest magnitude, since ‘40. Thus, for damage of
limited extent, we expect that the behavior of T3(x) in the damage zone is governed by the third term and hence
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the entire term is generally Oð�k�2‘Þ. Moreover, this term will be large in an absolute sense when ‘X1
2
k. This

condition speaks to the relative importance of damage extent in determining overall behaviors of the modal
discontinuities.

There is one non-generic situation that deserves some consideration for its effect upon T3(x). As seen in
Section 3.1.4, it is possible for D(Z) to have abrupt variations that can lead to very large values forD0(Z) and
D00(Z). Thus, it is possible for either of these derivatives to have magnitudes of Oð��d Þ with d40. (Note that it is
not expected that both derivatives take on large values at the same location in the damage zone; if one
derivative has a large magnitude, the other one is still likely to be an Oð�0Þ term.) If D00(Z) takes on Oð��dÞ

values at a certain location in the damage zone, then the overall estimate of the magnitude of the third term
becomes Oð�k�2‘�d Þ, an increase in the overall size of T3(x). If, however, D0(Z) takes on Oð��dÞ values, then the
estimated size of the second term is Oð�k�‘�dÞ, which could be equal to or even greater than the estimated size
of the third term, Oð�k�2‘Þ. This would lead us to conclude that the second term could not be neglected in any
estimate of T3(x). Thus, it may not always be a good idea to approximate T3(x) by the third term in Eq. (23), as
one could be underestimating the effect of T3(x) on Eq. (16) by doing so.

Next we turn our attention to T4(x), which represents changes in the initial inertial force associated with
direct mass loss and with shifting of the frequency of vibration. Since G(Z(x)) and Co;kðxÞ are expected to be
Oð�0Þ over most of the damage zone, the orders of the mass loss coefficient m and frequency shift O2

n � 1 govern
this term’s order in this region. We note that the exact value of O2

n cannot be determined without solving the
full problem posed by Eq. (10). However, a simple argument presented in Section A.2 of the Appendix A
shows that O2

n � 1 but that the size of O2
n � 1 is Oð�mþ‘Þ. Based on this, it is expected that the overall size of

T4(x) is Oð�mÞ and thus is not comparable to the Oð�k�2‘Þ terms associated with T3(x). Hence, T3(x) dominates
T4(x) asymptotically, justifying our ignoring of these inertial effects when estimating the overall order of the
right-hand side of Eq. (16).

It is more difficult to make generalizations concerning the left-hand side of Eq. (16), since the sizes of Fn(x)
and its derivatives are obviously undetermined. However, our numerical evidence from Section 3.2.2 clearly
indicates that one expects T1ðxÞbT2ðxÞ inside of the damage zone whenever stiffness-dominated behavior
prevails. One can also argue that the inertial term T2(x) should not be expected to make a significant
contribution to this portion of the equation. To see this, we note that assuming this inertial term to be
significant implies that Oððp4=16ÞO2

nf1� mGðZðxÞÞgFnðxÞÞ ¼ Oð�k�2‘Þ or lower. Since all of the other factors in
this expression are generically Oð�0Þ or higher in the damage zone, this assumption requires that
OðFnðxÞÞ ¼ Oð�k�2‘Þ; i.e., the change in the mode shape should be large whenever ‘X1

2
k. We point out,

however, that no researchers in the literature have claimed to find large changes in the mode shape induced by
damage, even for damage of reasonably large magnitude (k ¼ 0). Based on this observation, we consider it
unlikely (but not impossible) that T2(x) contributes significantly to the overall behavior of Eq. (16).

Based upon these results and assumptions, we are led to the following approximate relationship for Eq. (16)
whenever stiffness-dominated behavior applies:

d2

dx2
1� kDðZðxÞÞ
� � d2FnðxÞ

dx2

� �
�

d2

dx2
kDðZðxÞÞ

d2Co;nðxÞ

dx2

� �
. (25)

By formally integrating Eq. (25) twice and performing some algebra, we obtain

F00nðxÞ �
kDðZðxÞÞ

1� kDðZðxÞÞ
C00o;nðxÞ þ

Aþ Bðx� xdÞ

1� kDðZðxÞÞ
, (26)

where A and B are constants of integration. Assuming continuity of F00kðxÞ leads to the following:

A ¼
F00nðxd þ ldÞ þ F00nðxd � ldÞ

2
; B ¼

F00nðxd þ ldÞ � F00nðxd � ldÞ

2ld

. (27)

The approximation obtained can be considered to be a combination of local effects of the damage expressed
by the stiffness modification term and global effects of the damage (i.e., effects arising from outside of the
damage zone) expressed by the constants of integration. This result was the motivation for the use of kC00o;nðxÞ
in Fig. 18; Eq. (26) implies that F00nðxd Þ � ðkC

00
o;nðxdÞ þ AÞ=ð1� kÞ and so kC00o;nðxdÞ gives a somewhat rougher

estimate of the expected change in the modal curvature at the center of the damage zone.
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Although we do not have general estimates of the magnitude of the integration constants, we point out that
we typically expect that the magnitude of B exceeds that of A due to the factor of ld in the denominator of B.
This statement, however, assumes that OðF00nðxd þ ldÞ þ F00nðxd � ld ÞÞ is equal to OðF00nðxd þ ld Þ � F00nðxd � ldÞÞ,
which may not be true if F00nðxd � ldÞ and F00nðxd þ ldÞ are sufficiently close in value. Numerical evidence
suggests that it is possible to have A larger in magnitude than B, so we do not want to discount this possibility
in our subsequent analyses. It can also be stated that the second term on the right-hand side of Eq. (26) makes
a significant contribution to the approximation for F00nðxÞ only if OðAÞ ¼ Oð�kÞ or lower and/or if OðBÞ ¼
Oð�k�‘Þ or lower.

We can obtain further approximations on the higher derivatives of Fn(x) from Eq. (26). Taking a derivative
with respect to x and simplifying algebraically, we obtain

F000n ðxÞ �
k
ld

D0ðZÞ
f1� kDðZÞg2

F00o;nðxÞ þ
kDðZÞ

1� kDðZÞ
C000o;nðxÞ þ

B

1� kDðZÞ
þ

k
ld

D0ðZÞðAþ Bðx� xdÞÞ

f1� kDðZÞg2
. (28)

Once again, all of the functions appearing in this result are estimated to be Oð�0Þ in the damage zone, so the
coefficients determine the overall behavior. Eq. (24) tells us that the second term in Eq. (28) is expected to
make little contribution to the overall magnitude of C000n ðxÞ, since this term should be of higher order in e
compared to the first term for ‘40. As for the third and fourth terms of Eq. (28), we reiterate that we do not
have any formal estimates of the size of the integration constants, so generic claims regarding these two terms
are difficult to make. One way to gain some insight into the importance of these two terms is to assume that
OðAÞ ¼ Oð�kÞ and OðBÞ ¼ Oð�k�‘Þ, so that the second term on the right-hand side of Eq. (26) does make a
significant contribution to F00nðxÞ. It can then be shown that the fourth term in Eq. (28) has a generic size of
Oð�2k�‘Þ and thus would be less significant than the third term so long as the stiffness loss level is not Oð�0Þ.
Under such circumstances, we can approximate F000n ðxÞ as follows:

F000n ðxÞ �
k
ld

D0ðZÞ
f1� kDðZÞg2

C00o;nðxÞ þ
B

1� kDðZÞ
. (29)

Of course, the actual behaviors of A and B, as well as any possible large contributions from D0(Z), could render
this result invalid. However, under this hypothesis, we observe that the factor k/ld determines the overall size
of the third derivative changes and that potentially large changes can be expected even for small levels of
damage if the spatial scale of the damage is appropriately small. Thus, changes in the third derivative are
potentially much larger than the curvature changes (which have an overall size estimate of Oð�kÞ), making such
changes easier to find. From this, we infer that the damage radius scale ld plays an important role in
determining robustness of a higher order derivative as a damage indicator.

We follow a similar process to obtain approximations for the fourth derivative of the discontinuity function.
Based on our experience with the previous calculation, we recognize that the most significant contributions to
F0000n ðxÞ will come from terms resulting from derivatives of the stiffness modification function D(Z(x)) with
respect to x, as such terms will generate factors of l�1d that will magnify their size. Conversely, terms resulting
from a derivative of the undamaged curvature C00o;kðxÞ will not contribute significantly, since such derivatives
are still expected to be Oð�0Þ. Once again, predicting the importance of the terms involving integration
constants is a difficult task, but a reasonable argument can be made that such terms should not make
significant contributions to F0000n ðxÞ due to their overall small size. Taking these factors into account, we arrive
at the following result:

F0000n ðxÞ �
k

l2d

1

1� kDðZÞ
� �2 D00ðZÞ þ

2kðD0ðZÞÞ2

1� kDðZÞ

� �
C00o;nðxÞ. (30)

This derivative will be large in an absolute sense whenever kp2‘, which is a relatively unrestrictive
requirement. Thus, even small levels of damage have the potential to generate large changes in the mode shape
fourth derivative, making this derivative a prime candidate for the robust damage indicator discussed in
Section 1.

A comparison of these approximations with the corresponding numerical results is provided in Fig. 23.
We consider the simply supported beam problem, Mode 1 vibration, and the simplified damage model with
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Fig. 23. Comparison of analytical approximations and numerical results for the simply-supported beam problem with stiffness-dominated

behavior. numerical result, analytical approximation. (a) F
00

1ðxÞ, (b) F
000
1ðxÞ, (c) F00001ðxÞ.
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mid-section cracks and k ¼ 1. We set the damage level to be d ¼ 0.2; thus, m ¼ 0.2 and k ¼ 0.008. Finally, we
take xd ¼ 0.75 and ld ¼ 0.05; note that these choices of parameters are expected to lead to stiffness-dominated
behavior, since k=l2d ¼ 3:2bm ¼ 0:2. As seen in Fig. 24, the approximate analytical results from Eqs. (26),
(29), and (30) compare very well to the ‘‘exact’’ numerical integrations of the damage-induced discontinuities
in the damage zone. The approximations even appear to become more accurate as the order of the derivative
discontinuity increases, although scaling plays a role in this. Nevertheless, we feel that the analytical
approximations give a good estimation of the expected behavior in the damage zone, justifying their use in
diagnosing higher order derivative discontinuity behavior.

4.2.2. Case 2: inside the damage zone—mass-affected behavior

The assumption of mass-affected behavior leads to a different approach to the problem of finding
approximations for the higher order modal derivatives. As discussed above, the term T4(x) now dominates
T3(x), leading to the following approximate version of Eq. (16):

d2

dx2
f1� kDðZðxÞÞg

d2FnðxÞ

dx2

� �
�

p
2

� �4
O2

n � 1� mO2
nGðZðxÞÞ

 �
Co;nðxÞ. (31)
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Fig. 24. Comparison of analytical approximations and numerical results for F0000ðxÞ in the simply-supported beam problem with mass-

affected behavior. numerical result, analytical approximation.
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We formally integrate this equation on both sides twice from the left edge of the damage zone to an arbitrary
location in the interior of the damage zone:

F
00

nðxÞ �
ðp=2Þ4

1� kDðZðxÞÞ

Z x

xd�ld

Z x0

xd�ld

O2
n � 1� mO2

nGðZðx
00
ÞÞ

 �
Co;nðx

00
Þdx00dx0 þ

Āþ B̄ðx� xd þ ld Þ

1� kDðZðxÞÞ
. (32)

Here, Ā and B̄ are constants that are related to the values of F
00

nðxd � ldÞ and F000n ðxd � ldÞ.
Further information on the functional form of F00nðxÞ cannot be obtained without knowledge of the

undamaged mode shape Co;nðxÞ and the mass modification function G(Z(x)). However, a reasonable estimate
of the scale of this discontinuity can be found by noting the continuity of the integrand and invoking the
Intermediate Value Theorem. This tells us that, for every value of x, there must exist a point x*(whose value
depends upon x) such that xd�ldpx*px and

F00nðxÞ �
ðp=2Þ4

2 1� kDðZðxÞÞ½ �
fO2

n � 1� mO2
nGðZðx

�
ÞÞgCo;nðx

�
Þ

 �
ðx� xd þ ld Þ

2
þ

Āþ B̄ðx� xd þ ld Þ

1� kDðZðxÞÞ
. (33)

Recalling that we generically expect O2
n � 1 and OðO2

n � 1Þ ¼ Oð�mþ2‘Þ, we estimate that the overall size of the
first term in the above expression is Oð�mþ2‘Þ. As for the second term in the above approximation, exact
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estimates of the sizes of Ā and B̄ are again not possible to make based upon the information available, but we
can surmise that this second term will not make a significant contribution to F00nðxÞ unless OðĀÞ ¼ Oð�mþ2‘Þ or
lower or OðB̄Þ ¼ Oð�mþ‘Þ or lower. Assuming that the first term of the approximation is in fact the governing
one, we conclude that changes in modal curvature are expected to be quite small (indeed, smaller than the
damage-induced mass loss) when mass-affected behavior is relevant.

Following procedures similar to those described above, we can arrive at formal approximations for F000n ðxÞ
and F0000n ðxÞ, as well as estimates of their magnitudes. The main results are shown below:

F000n ðxÞ �
ðp=2Þ4

1� kDðZðxÞÞ
�

Z x

xd�ld

O2
n � 1� mO2

nGðZðx
0
ÞÞ

 �
Co;nðx

0
Þdx0 þ

B̄

1� kDðZðxÞÞ
; OðF000n ðxÞÞ ¼ Oð�mþ‘Þ.

F0000n ðxÞ �
p
2

� �4 O2
n � 1� mO2

nGðZðxÞÞ
 �

Co;nðxÞ
1� kDðZðxÞÞ

; OðF0000n ðxÞÞ ¼ Oð�mÞ. ð34Þ

As was true of the stiffness-dominated case, we see that higher order derivative discontinuities are anticipated
to have larger magnitudes as the order of the derivative increases. None of these terms, however, are expected
to be large in any absolute sense, especially since our experience suggests that mass-affected behavior is
associated only with very low levels of damage for which mass loss effects should be already rather small.
These observations, therefore, compel us to state the caveat that higher order mode shape derivative
discontinuities are not guaranteed to provide robust indicators of damage for beam-like structures under all
damage scenarios; certain relations must hold among the stiffness loss, mass loss, and damage length scales
before robust performance can be obtained.

Once again, we check the quality of this approximate analysis by performing a comparison of approxi-
mate and ‘‘exact’’ numerical results. We consider the same simply supported beam problem discussed in
Section 4.2.1, but here we choose d ¼ 0.002 which leads to m ¼ 0.002 and k ¼ 8.0� 10�9. This is a clear
example of mass-affected behavior, since k=l2d ¼ 3:2� 10�65m ¼ 0:002. In Fig. 24, we show the approximate
and numerical results for the fourth derivative discontinuity function; we see a very good level of agreement
between the two results. These results, while obviously not a firm proof, do give us confidence that we have
captured the underlying discontinuity behavior appropriately with our approximation.

4.2.3. Case 3: inside the damage zone—balanced behavior

The case of balanced behavior presents no new complications as far as obtaining formal approximations of
modal derivative discontinuities is concerned. As discussed in Section 3.2.2, the appropriate approximation of
the governing equation for modal discontinuities in this case is

d2

dx2
f1� kDðZðxÞÞg

d2FnðxÞ

dx2

� �
�

d2

dx2
kDðZðxÞÞ

d2Co;nðxÞ

dx2

� �
þ

p
2

� �4
½O2

n � 1� mO2
nGðZðxÞÞ�Co;nðxÞ. (35)

The right-hand side of this equation is the sum of the right-hand sides of Eqs. (25) and (31). Linearity of the
integration process allows us to conclude that the formal approximations for F00nðxÞ, F

000
n ðxÞ and F0000n ðxÞ are

simply the sum of the formal approximations derived for the previous two cases; the approximation for F
00

nðxÞ
is just the sum of the right-hand sides of Eqs. (26) and (32), and similarly for F000n ðxÞ and F0000n ðxÞ.

We check these results by again considering the Mode 1 simply supported beam vibration problem with
mid-section cracks from the previous two subsections; in this situation, the damage parameter values are
chosen to be m ¼ 0.05 and k ¼ 1.25� 10�4, leading to k=l2d ¼ 0:05 ¼ m. In Fig. 25, we observe the comparison
of the exact and analytical results for this case for the fourth derivative discontinuity function in the damage
zone; note that the approximate result is the sum of the results shown in Eqs. (30) and (34). Once again, a high
level of agreement between the two results is observed. It is interesting to note that, if we decompose the
analytical approximation, the stiffness-dominated term from Eq. (30) gives the largest contribution to F00001 ðxÞ
in this case. However, the mass-affected term from Eq. (34) is necessary in order to obtain a more exact
agreement. Hence, both terms are truly required in order to have a good approximation for balanced
behavior.

A condition on the magnitudes of the various damage terms that leads to balanced behavior can be derived
by recalling that balanced behavior requires that the two terms on the right-hand side of Eq. (35) be of the
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Fig. 25. Comparison of analytical approximations and numerical results for F00001ðxÞ in the simply supported beam problem with balanced

behavior. numerical result, analytical approximation.
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same order. From our previous analyses, this implies that

Oð�k�2‘Þ ¼ Oð�mÞ ) k � 2‘ ¼ m. (36)

From this, it can be clearly seen that balanced behavior represents a ‘‘boundary’’ between the stiffness-
dominated and mass-affected behaviors. From our order estimates for T3(x) and T4(x), we know that know
that k � 2‘om defines stiffness-dominated behavior; likewise, mass-affected behavior arises whenever
k � 2‘4m. We note that it is possible to have stiffness-dominated behavior without having the mass loss and
stiffness loss coefficients be of the same order. For example, a situation like m ¼ k � ‘ would lead to ‘‘larger’’
mass loss effects as compared to stiffness loss effects but would still be consistent with overall dominance of
the stiffness terms. Examples of this would include the case of mid-section cracks of moderate or relatively
large extent; the loss of moment of inertia is still proportional to the cube of the loss of section, while the loss
of mass is proportional to section loss, but the magnitude difference between T3(x) and T4(x) decreases as the
loss of section increases. This reinforces the suggestion that stiffness-dominated behavior is much more
common than the other behaviors observed in this study.

4.3. Special considerations

There are a number of the assumptions made in Section 4 that require special consideration. For example, it
was assumed in Section 4.1 that the nondimensional damage radius ld scaled as l̄d�‘ with ‘40. This permitted
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us to make conclusions about the relative sizes of various terms in our formal analysis without having to
consider too many special situations. However, we acknowledged that ‘p0 is a physically possible situation
expected to occur whenever the damage zone has significant spatial extent or when the wavelength of the mode
under consideration becomes sufficiently small. To understand the ramifications of these physical cases, we
return to Eq. (36) and the discussion of the roles of k, ‘, and m in determining the behavior of FnðxÞ in the
damage zone. From these, we observe that ‘ ¼ 0 (i.e., having the damage radius be comparable in length to the
quarter wavelength) turns the balanced behavior condition into k ¼ m, and so we generically expect stiffness-
dominated behavior whenever the stiffness loss scale exceeds the mass loss scale significantly and mass-
affected behavior whenever the mass loss is more significant than stiffness loss. We also anticipate that none of
the higher order derivative discontinuities would be large in an absolute sense, as the size of k or m (or both)
determines the overall magnitude of the discontinuities. One can also surmise that the possible presence of
large magnitude values for D0(Z) or D00(Z) takes on added importance, as these would make stiffness-dominated
behavior more likely to occur (the governing condition becomes k�dom) and would provide a mechanism to
generate large discontinuities in F000n ðxÞ and F000n ðxÞ. As for the case ‘o0, we see that this physical situation
tilts the expected behavior of the discontinuities more towards mass-affected behavior, since stiffness-
dominated or balanced behaviors can now only occur if the stiffness loss effects greatly exceed the mass
loss effects. Once again, overall sizes of the discontinuity derivatives would be anticipated as small in this
case. Thus, we conclude that having ‘p0 leads to physical situations that render the higher order modal
Fig. 26. Comparison of analytical approximations and numerical results for the continuous beam problem using the Christides–Barr

damage model. numerical result, analytical approximation. (a) F
00

1ðxÞ, (b) F
000
1ðxÞ, (c) F00001ðxÞ.



ARTICLE IN PRESS
T.M. Whalen / Journal of Sound and Vibration 309 (2008) 426–464460
derivative discontinuities less effective in indicating the presence of damage, implying that higher modes are
not a good choice for use in damage detection and that global damage cases are best detected using other
techniques.

The assumption that D(Z) is C2-continuous has a more dramatic impact upon the analysis. In fact, many of
the conclusions drawn will not hold if the stiffness modification function does not have this level of continuity.
For instance, if we permit DðZÞ ¼ 1� Z



 

 to be a valid model of the stiffness loss, D00ðZÞ ¼ �dðZÞ and the
approximation discussed in Section A.1 of the Appendix A for D00(Z) no longer applies. Analysis of such
situations requires the approaches utilized in Ref. [22] or Ref. [23] and will not be pursued in this work.
The consequences of violating this assumption can be seen in Fig. 26, where we show a comparison of the
analytical approximates and numerical results for the continuous beam problem employing the
Christides–Barr damage model. The presence of the |Z| term in Eq. (19) leads to a discontinuity for D0(Z) at
Z ¼ 0. We considered Mode 2 vibrations and chose k ¼ 0.03, m ¼ 0.01010, xd ¼ 0.75, and e ¼ 1.0� 10�5

which led to ld ¼ 0.07783. As seen in the figure, the approximate results do a much poorer job of mimicking
the numerical results, particularly for F000nðxÞ, which is expected to be proportional to D0(Z). We attribute this
to a smoothing of the discontinuities that result from trying to bridge the discontinuous derivative term in a
continuous fashion. It should be noted that the assumption of C2-continuity for D(Z), while clearly important
to this work, is ultimately a modeling choice that allows us to predict behavior of our chosen damage
indicator. It is not required that damage present in a real physical system should obey this property; indeed, no
such requirements were considered during experimental validation of this damage indicator [31]. Thus, the role
that this assumption plays in the analysis needs further consideration.

5. Conclusions

This work has examined the effect that damage has upon second, third, and fourth order derivatives of the
mode shapes of structures having primarily beam-like vibration. Via numerical investigations, the sensitivity
of various damage related parameters in inducing changes in these higher order modal derivatives was
determined, leading to a more complete understanding of what factors make the most contribution to
significant changes in these derivatives. We were also able to identify three distinct types of response for the
damage-induced higher order derivative discontinuities as three key parameters (the mass loss, stiffness loss,
and damage radius scales) were varied. From this, we obtained formal approximations for the expected forms
of the higher order derivative discontinuities based upon the underlying behavior predicted by a simple
relation among these three parameters. These approximations were checked with numerical simulations, and
an excellent level of agreement was observed under appropriate conditions. Finally, we examined the potential
of these higher order derivative changes for indicating the presence and location of damage in a global setting.

Summarizing the previous results, we conclude that all of these higher order derivatives are expected to
show the effects of damage most prominently inside of the damage zone, making them good indicators of
damage location. In contrast, damage was shown to produce global changes in the mode shapes, rendering
them less effective at locating damage. All of the higher order modal derivative discontinuities were sensitive
to damage level, axial variations in the damage, and the underlying mode shape. More specifically, for the
most common type of damage scenario (i.e., stiffness-dominated behavior), all higher order derivative changes
were sensitive to maximum stiffness loss and the curvature of the undamaged mode shape. Also, the third and
fourth derivative discontinuities showed strong sensitivity to the relative axial size of the damage zone as
compared to the modal wavelength, with larger changes being exhibited for smaller relative sizes. Finally,
changes in the nth order modal derivative showed a correlation with the (n�2)th spatial derivative of the axial
variations in damage, leading to the possibility that abrupt changes in damage profile along the beam could
manifest themselves as large changes in the third and fourth derivatives. Investigations into the role of mass
loss led to the discovery of three distinct types of higher order derivative change, namely the stiffness-
dominated, mass-affected, and balanced behaviors. Under the assumption of stiffness-dominated behavior, it
was shown that the choice of mass model has very little impact upon modal discontinuities, being relevant only
for the higher frequency vibration modes and, even then, diminishing in importance as the modal derivative
order increases. When mass-affected behavior or balanced behavior was assumed, the choice of mass model
had a much more prominent effect upon the higher order derivative discontinuities.
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With the better understanding of the possible types of discontinuity behavior, it was possible to make some
approximations to the governing equations and thus obtain formal estimates of the expected changes in the
higher order derivative discontinuities for various damage scenarios. The simple relation among stiffness loss,
mass loss, and damage radius shown in Eq. (36) allowed us to predict which terms in Eq. (16) (the governing
equation for the modal discontinuities) would make the strongest overall contributions, thus permitting us to
ignore certain terms and thus obtain simpler equations that could be ‘‘solved’’ for the higher order derivative
discontinuities. The accuracy of these predicted changes in the damage zone was demonstrated to be quite
good so long as certain continuity assumptions held.

As a related issue, it is our opinion that lower frequency modes are the best choices to analyze for damage-
induced modal changes, as higher modes demonstrated less sensitivity to damage radius, more sensitivity to
the details of the mass loss, and overall lower levels of change, making damage much harder to detect as the
mode number increases. This is, of course, advantageous from an operational point of view, as higher order
modes are typically more difficult to detect accurately in the field.

It is worth mentioning that this work merely explores that potential that the various higher order modal
derivative changes have in indicating damage. An equally important task is the creation of robust and efficient
analysis algorithms that can process experimental data regarding a chosen damage feature and produce a
clear, statistically significant indication of damage. The use of fourth order modal derivative discontinuities as
a damage feature has a fundamental concern that modal fourth derivatives cannot be obtained from direct
physical measurements but instead must be calculated numerically, introducing possible errors. The creation
of such algorithms using the fourth order modal derivative discontinuity is on-going [31] and shows promise as
a viable global damage detection technique. What this work has shown is that all higher order modal
derivative discontinuities display the strong localization and sensitivity properties one desires in a good
damage indicator under the assumption of beam-like vibrations. Coupled with a better understanding of the
expected modal derivative changes, one can anticipate a variety of improved methods for identifying damage
via global vibration measurements resulting from this work.
Appendix A. Order estimates

A.1. Order estimates for derivatives of the stiffness modification function

Since D(Z) is assumed to be C2-continuous over Z


 

p1, we can obtain estimates of D0(Z) and D00(Z) at certain

points by recalling the assumptions that D(Z ¼ 0) ¼ 1 and that D and its derivatives are essentially zero for
Z


 

X1. When we consider the properties D(Z ¼ 0) ¼ 1 and D(Z ¼ �1)E0 and apply the Intermediate Value
Theorem, we conclude that there is a point Z ¼ Zl in the damage zone such that

D0ðZ ¼ ZlÞ �
0� 1

�1� 0
¼ 1. (A.1)

Similarly, considering D(Z ¼ 0) ¼ 1 and D(Z ¼ 1)E0 leads to the result

D0ðZ ¼ ZrÞ �
0� 1

1� 0
¼ �1 (A.2)

at some point Z ¼ Zr in the damage zone. Both of these quantities are Oð�0Þ in magnitude. Hence, continuity of
D0(Z) tells us that there are at least two regions in which D0(Z) takes on Oð�0Þ values.

As for D00(Z), if we apply the Intermediate Value Theorem to the previous two slope estimates, we conclude
that there is a point Z ¼ Zc in the damage zone such that

D00ðZ ¼ ZcÞ �
1� ð�1Þ

Zl � Zr

¼
2

Zl � Zr

. (A.3)

Noting that Zr � Zlo2, we see that D00ðZ ¼ ZcÞ


 

 is bounded below by the value 1, which in turn implies that

D00ðZ ¼ ZcÞ is at least Oð�
0Þ in magnitude. The assumed C2-continuity then permits us to conclude that a finite-

sized portion of the damage zone must have Oð�0Þ magnitudes for D00ðZÞ. From these arguments, we see that
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both derivatives of the stiffness modification function will attain finite values in the damage zone, although
clearly small magnitudes of these derivatives can also exist within this region.

A.2. Order estimate for the frequency ratio

Turning our attention to the frequency ratio On, we recall that the frequencies of any mode of the system can
be evaluated by computing the generalized (modal) stiffness and generalized (modal) mass corresponding to
that mode. More specifically, we have the following formulas:

o2
n ¼

Kn

Mn

; Kn ¼

Z L

0

EIðxÞY 00nðxÞ
2dx; Mn ¼

Z L

0

rAðxÞY nðxÞ
2dx. (A.4)

Under our assumptions regarding the flexural rigidity and linear mass density of the damaged system, these
expressions can be rewritten in nondimensional form to give

o2
n ¼

EIo

rAoL4
o;n

Z Ln

0

½1� kDðZðxÞÞ�C00nðxÞ
2dx=

Z Ln

0

½1� mGðZðxÞÞ�CnðxÞ
2dx. (A.5)

If the system is undamaged, the above equation can be simplified:

o2
o;n ¼

EIo

rAoL4
o;n

Z Ln

0

C00o;nðxÞ
2dx=

Z Ln

0

Co;nðxÞ
2dx. (A.6)

To obtain an approximation for O2
n, we replace CnðxÞ and C00nðxÞ with Co;nðxÞ and C00o;nðxÞ, respectively, in

Eq. (A.5). (The validity of this step will be discussed later.) After performing some algebraic manipulations
and using Eq. (A.6), we arrive at the following:

o2
n � o2

o;n

1� kcD

1� mcG
; cD ¼

R xdþld

xd�ld
DðZðxÞÞC00o;nðxÞ

2dxRLn

0
C00o;nðxÞ

2dx
; cG ¼

R xdþld

xd�ld
GðZðxÞÞCo;nðxÞ

2dxRLn

0
Co;nðxÞ

2dx
(A.7)

Since all of the integrals in cD and cG involve continuous functions, there must exist four points x1, x2, x3, and
x4 such that

cD ¼
2ldDðZðx1ÞÞC

00
o;nðx1Þ

2

LnC00o;nðx2Þ
2

� ldc
�
D; cG ¼

2ldGðZðx3ÞÞCo;nðx3Þ
2

LnCo;nðx4Þ
2

� ldc
�
G. (A.8)

In Eq. (A.8), we note that c�D and c�G are generically of order Oð�0Þ due to the assumed behaviors of Co;nðxÞ,
C00o;nðxÞ, GðZðxÞÞ, and DðZðxÞÞ. Using these results in Eq. (A.7) then leads to

o2
n � o2

o;n

1� kldc
�
D

1� mldc
�
G
; or O2

n �
1� kldc

�
D

1� mldc
�
G
. (A.9)

The above analysis produces an estimate that O2
n is approximately equal to one, assuming small values for k,

m, and ld. As for O2
n � 1, simple algebra gives the following approximation:

O2
n � 1 �

mldc
�
G � kldc

�
D

1� mldc
�
G

. (A.10)

Assuming that k and m are of the same order, this expression must be Oð�mþ‘Þ, since the denominator is close
to one in value. Note that the quality of these two approximations hinges upon the accuracy of replacingCnðxÞ
and C00nðxÞ with Co;nðxÞ and C00o;nðxÞ in Eq. (A.5). The main source of error in this step comes from the fact that
C00nðxÞ is not necessarily close to C00o;nðxÞ in the damage zone. However, the effects of this error are limited, since
the damage zone size is still Oð�‘Þ.
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